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Abstract—In this work, we present a new approach to auto-
mate the process of construction using self-interlocking building
blocks specifically SL-Blocks. Utilizing this block type, complex
structures will be automatically assembled with an industrial
robot arm. The challenges inherent to the task, the need for high
precision tracking, and occlusion robustness for said tracking
are needed to accomplish the joining of parts with tolerances
at the millimeter level. They are tackled by building on recent
methods for fiducial marker-based tracking. The compliant
design of the blocks combined with impedance control allows
us to perform robustly despite remaining uncertainties. Our
proof of concept setup is nearing completion. It is described
alongside our vision for the next project stages in future work.

I. INTRODUCTION

With the ongoing research in the field of robotics and
the advancements made in the last years, new opportunities
for useful applications arise. Robots are already widely
used in industrial settings to perform simple repetitive tasks
previously done by human workers [1]. Especially for fac-
tory assembly lines, robots have been shown to effectively
automate tasks without the presence of humans in a well-
defined environment. However, automation in the domain of
construction work is still largely unexplored. Despite many
innovative building projects which not only grow in their
complexity but also in size, the core of construction work is
still dominated by manual labor. This is largely due to the
many complex work steps in current construction procedures,
which makes it very difficult to automate those tasks using
robots. As shown by Gharbia et al. [2], more research is
now being conducted in the field of construction with more
papers being released every year. Particularly the area of
additive manufacturing as well as automated installation and
assembly are popular topics. One way to do so is to change
the way structures are built. This has been shown success-
fully by using giant 3D printers to extrude structures out of
special concrete mixtures [3]. Even though this approach is
still subject to research, it has been shown to be a promising
alternative for constructing arbitrary structures in the future.

Besides the automation context, it is important to look
at the sustainability and environmental impact of current
construction methods. Since many types of contemporary
constructions are based on the permanent bonding of
building parts with mortar or adhesive material, it is
not always possible to dismantle such structures without
destroying the individual parts. This results in a lot of
wasted materials. Working with reusable components
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would not only enable faster assembly and disassembly of
such structures but also bring financial and environmental
benefits. Previously used parts of structures can be reused
and therefore do not need to be produced from scratch.
This can be achieved using building elements that are held
together by topological interlocking [4].

This work aims to develop an automated system for
the construction of predefined 3D structures out of SL-
Blocks [5], a self-interlocking block system. There has
been some previous work on developing methods to stack
SL-Blocks and other non-specifically shaped blocks in the
architectural context [6] [7] [8]. However, the focus was
mainly on developing motion-planning strategies for placing
the blocks.

As joining multiple blocks into a structure requires mil-
limeter level accuracy we pursue high-precision block track-
ing. An inherent challenge to the task is that the manipulated
objects are subject to high degrees of occlusion especially
when tracked from only a single perspective. We address this
by applying fiducial markers to each face of the block, for
which we assume the transformation to be known. Taking
this as an additional assumption we modify recent multi-
marker and multi-view-based object tracking methods. This
enables us to infer the translation and orientation of occluded
block surfaces from the detected visible markers. The known
block model including marker placements is also expected
to increase the tracking precision.

Based on the generative system to build self-interlocking
structures introduced by [5] we develop a new approach
for automated structure construction. Shih’s work gives us
a decomposition of the desired structure. Existing software
generates a construction plan for the decomposition, meaning
an order of block placements. Given block pickup poses
another piece of existing software will then generate robot
trajectories to pick and insert the blocks into the partial
structure. Robot control will for now be done using the
control software provided by Franka, the manufacturer of
our robot, that follows input trajectories.

This is where our work picks up. As the first step towards
automated assembly, the focus of this project lies on the
development of marker-based tracking of SL-Blocks. Addi-
tionally to this the full integration of a construction pipeline
using the existing parts is tackled. This includes developing
the experimental setup and creating software bridges using
the Robot Operation System (ROS)[9].



Lastly, we are using a simulation environment to evaluate
our tracking performance in different scenarios. Furthermore
the simulation will enable us to freely experiment without
safety concerns, and possibly, later on, provide a platform
for reinforcement learning (RL) to train controllers used for
stacking blocks.

II. RELATED WORK
A. SL-Block

Finding and designing new self-interlocking structures is
an active field of research with possible applications in many
fields. Engineers and architects are looking for different types
of interlocking blocks that can be easily assembled and
disassembled without using fasteners or any kind of adhesive
materials like mortar or glue. Current research focuses on
making use of the topological interlocking property of these
building blocks with the goal of building complex structures.
Regarding the recent development in automated digital fabri-
cation technology, 3D printing technology is used more and
more to fabricate complex objects. However, when it comes
to printing large objects, the extrusion capabilities for single-
piece objects are limited by the size of the printer’s working
volume. To overcome this issue, recent work like Song et al.
[10] proposes to focus on printing 3D parts and making use
of their interlocking property instead of using an adhesive
material.

In 2016, Shih and Shen-Guan [5] introduced the SL-Block,
a specific type of polycube, more precisely an octocube built
up from an S-shaped and an L-shaped tetracube attached
to each other. Figure 1 shows the structure of the SL-
Block. They introduce a generative process (context-free
string grammar) to provide a formalized language to describe
possible structures that can be built using the interlocking
SL-Blocks. It has been shown that it is possible to create
various structures of different complexity just by combining
identical SL-Blocks in different orientations [11]. Using this
language, large and firm structures can be built in a top-down
manner. Due to the interlocking property of the SL-Block,
it is possible to build hierarchical structures without using
any type of adhesive material such as mortise/tenon, glue, or
nails.

B. Object Tracking

Tracking and detection of objects is an active area of
research with many different approaches. Those approaches
can be mainly categorized by the type of data and the
resulting dimension of the data used to infer hypotheses
about the object. The more dimensions the more information
is available to form a sophisticated guess of the location
and possible orientation of the inspected object. There
are computer vision-based, as well as non-vision-based
approaches. A non-vision-based approach was used by
[12] to track the object pose just by evaluating the joint
measurements of a robotic hand holding the object of
interest. However, they realized that using just the joint
measurements leads to significant offsets in the object
pose estimation. Therefore they included a vision-based

detection system to fuse it with the previously gained joint
angles to form a good estimation of the object pose. This
demonstrates that for precise predictions of manipulated
object’s poses, more than robot joint information is needed.
A vision-based object tracking method is used by Pauwels
et al. [13]. They use an RGB-D camera to extract depth
information to update a 3D simulation of the scene. The
simulation is then used to determine the pose estimate.

A simple yet robust alternative is to use fiducial markers
on the objects to be captured. Because of their great detection
rates even in bad lightning conditions, inbuilt pose estimation
for the tags and error-resistant design fiducial markers such
as AprilTag are popular methods for object tracking [14],
[15], [16] or even Simultaneous Localization and Mapping
[17] in controlled environments. Of the currently available
flat rectangular tag variant designs, AprilTag seems to per-
form best [18] and is thus used for our project. Recently
marker bundle-based object trackers have shown remarkable
pose estimation accuracy. In Sarmadi et al. [19] a joint
approach for camera calibration, estimation of the relative
transformations of the markers, and reference perspective
trajectory estimation of the markers were presented. They
used a multi-camera setup with partially overlapping fields
of view (FOVs), objects with applied markers bundles,
and reprojection error minimization to achieve this. In [20]
a similar technique is pursued. Instead of using multiple
cameras and general multi-marker object tracking, they focus
on tracking a single dodecahedronal manipulator attachment.
Tags are placed on its surface ensuring that multiple are vis-
ible at the same time from the camera’s FOV. They calibrate
the cameras, then detect and optimize the transformations
between the markers. During operation, the calibration and
transformation estimates are used to track the pose of the
chosen reference marker from a single camera. Both papers
accomplish tracking markers even though they might not
be visible at the time, by estimating other marker poses
from the visible marker poses using their optimized pair-wise
transformations. To refine a singular estimation of all desired
marker poses, both works minimize a reprojection error - the
mean squared error over the differences of estimated marker
transformations to the detected marker transformations.

C. Compliant Control

In classical robotics, robots are commonly controlled using
position controllers, which facilitate precise motion and
predictable execution of tasks. Industrial robots deployed
in manufacturing environments serve as an appropriate ex-
ample of such robots. These robots typically operate in
environments where all parameters are predetermined and
frequently carry out repetitive tasks that necessitate precise
manipulation. However, the environments in which they
operate exhibit little to no variability, implying that the
robot’s objective can be accurately defined. In simpler terms,
these robots do not need to account for environmental
imperfections. For instance, in the context of industrial pick-
and-place operations, if the object to be placed varies slightly
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from the predetermined object location, the system may
become unstable and fail. Thus, the conventional position-
controlled robots may not be the best option for deployment
in unstructured environments or for tasks that may entail
variability. Compliant control techniques, such as impedance
control, are an alternative to traditional position control for
robots. These techniques enable robots to operate effectively
in dynamic and uncertain environments by regulating their
response to external forces and complying with the task
requirements [21]. Impedance control, in particular, is a
compliant control technique that has been widely used in
robotics, allowing robots to respond appropriately to external
forces or disturbances while interacting with the environ-
ment. This is commonly achieved by modeling the robot as
a mass-spring-damper system. The spring component is used
to regulate the resistance to displacement of the robotic arm
and the damper limits the velocity.

F=M(X;+Big+K(xg—x4)) (1)

F is the force applied by the robot’s end-effector, M is the
mass matrix of the robot, x; is the desired acceleration of
the end-effector, Bx, is the desired damping term of the end-
effector, K is the stiffness matrix of the end-effector, x, is
the desired position of the end-effector and x, is the actual
position of the end-effector. This equation represents the
dynamics of the robot’s end-effector in response to external
forces and the desired impedance. The terms on the right-
hand side of the equation represents the desired motion of the
end-effector (the first two terms) and the desired impedance
(the last term). By adjusting the values of M, B, and K, the
characteristics of the robot can be tuned to match the required
properties of the task.

III. OUR APPROACH

In this section, we will describe the individual parts of
our project pipeline. First, we describe the setup for the SL-
Block. Followed by the real-world setup with three cameras
and the Franka Emika robot [22]. Next, we describe the
object pose estimation pipeline and our control scheme.
Lastly, we describe how the Isaac-Sim Simulator is used
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Image of an SL-Block (Image by DDU). Introduced by [5] it consists of an S-shaped and an L-shaped tetracube attached to each other.

Fig. 2. Image of an SL-Block [5] with AprilTags (left). SL-Block with
round corners (center). 3D printed april-tag prototype (right)

to provide a simulation platform to evaluate our approach
before applying it to the real robot.

A. SL-Block

As described in section II-A this work makes use of the
SL-Block, introduced by Shih et al. [S5]. The SL-Block can
be used due to its special topological interlocking property to
build complex and firm structures by stacking them together
without using any kind of adhesive material. To be able to
detect and track the block, we use fiducial markers in the
form of AprilTags [23]. A unique AprilTag is applied to
each face of the block as can be seen in Figure 2. To get
an exact mapping between the tag and position relative to
the block, each placed tag is uniquely labeled by a number
between 0 and 33. For each block, we use 34 different tags.
To later distinguish different SL-Blocks, each marker id is
only used once throughout the whole setup.

Although using many tags to label a block can be incon-
venient practically and aesthetically, reducing the number of
tags can lead to less accurate estimation since the pose is
determined solely based on the visual-markers. When the
majority of markers are obscured by the structure, having
enough tags is essential for a robust estimate. Using only
one camera, an average of less than 9 tags are used to
determine the pose. We have considered limiting this number
to use only the n best detections for future optimization. The
detection pipeline itself is set up to scale with as many blocks
as possible limited by the number of program instances
your computer(s) can handle To address these issues, a
promising solution is to use invisible tags. Recent research
has explored the use of materials visible only in the infrared
spectrum to create tags that are invisible to human vision



Fig. 3. Experiment setup containing the dual-arm robot and the three
cameras positioned around the table.

[24]. By adopting this technique, structures can be labeled
in a visually pleasing way while still maintaining accurate
labeling. This approach not only enhances the structure’s
aesthetics but also its functionality by reducing visual clutter
and improving the user experience.

We have multiple variations of SL-Blocks to work with.
The oldest and still primarily used block in terms of experi-
mentation is made of wood with tags attached to each face.
This block however has multiple drawbacks which we will
go into here. The first drawback is the fact, that the tags are
glued to the faces of the block which results in imperfect
placement and therefore induces error in the overall pose
estimation. Additionally, being printed on paper, the tags
are easily damaged, especially when being manipulated by
a robot. To resolve this issue we found a way to use 3D-
printed blocks with markers printed on them. This provides
us not only with more precise placement of the tags but
moreover, guarantees more robust tags which are less prone
to being damaged during manipulation. The first version of
the block consisted of cubes with sharp edges. This leads to
the problem of tight trajectory tracking tolerances. Relaxing
this constraint the combination of the new compliant block
shape and an impedance controller for insertion improves
the general performance. It also compensates for small errors
in object pose estimation, funneling the trajectories into the
desired placement location when they are close enough to
the targeted one.

B. Real-World Setup

We use three ultra-high resolution (4K) webcams (Log-
itech Brio) placed around the scene to track the SL-Block. By
using ultra-high resolution images we can place the cameras
outside of the working environment of the robotic arm and
are still able to detect the AprilTags with sufficiently high
accuracy. We calibrated each camera individually using a 6x6
checkerboard method available through the OpenCV library
[25]. The cameras have to be oriented in such a way, that
the blocks, as well as the workspace, are visible from as
many angles as possible. One reason for this is the relatively
inaccurate distance estimation for the AprilTags [18]. Having
at least one orthogonal view is therefore advantageous to get

a better depth estimate for the respectively other cameras.
The other reason is to handle occlusions from a single
perspective. The derived camera configuration utilized in the
end has the cameras placed around the table to the left,
right, and front of the robot, facing it. They are mounted
at different heights and angled downwards towards the same
spot resulting in differing tilts.

C. Object Pose Estimation Pipeline

In this section, we first describe the common basis of
our estimation approaches, then a baseline method we use
for comparison and lastly our actual block pose estimation.
The baseline is included for comparison on the same
data. For this, we generate input image streams and truth
position values to compare against in simulation. This
isolates the algorithm performance from outside influences.
The statistical evaluation can be found later on in chapter I'V.

Our pose estimation for the SL-Block starts with tag
detection. The continuous detection node from apriltag_ros2
library scans each camera stream for suitable tags. All
detections are then published to the detection topic of the
corresponding camera. The object locator node reads these
and on each received detection array the estimations of all
detected blocks are updated.

Due to our modeling, we know where on the block each
tag is located and which orientation it has relative to our
chosen reference tag. We identify the tags by their ids
encoded in the marker.

In the following, i is a detected tag and o is another tag.
We know the transformations ¢, T from the reference tag to
the other tags from our modeling and the transformations
ST from our detections to the detecting camera. First, we
calculate the transformation from the reference tag’s frame
to the cameras c:

camem __came i
ref T i T re

T )

Afterward, we calculate all transformations from the other
tag frames to the cameras c, based on this estimated trans-
formation:

DT = T g T 3)

As a baseline, we decided to collect these transformations
and average them tag-wise. For the translation, a mean
is calculated while for the rotation the averaging is done
following the maximum likelihood method for quaternion
averaging [27]. The problem of orientation ambiguity in
marker-based pose estimation, as analyzed by Springer and
Kyas [28], can result in discontinuities in the orientation
estimation. Specifically, it can lead to the flipping of signs in
the orientation estimate of the z-axis. Therefore, such discon-
tinuities are to be expected, and they can affect the accuracy
and robustness of the pose estimation process. We discovered
this ourselves and decided outlier detection was required for
the baseline. We first considered implementing RANSAC
[29] but due to the way we implement the estimation, we
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Fig. 4. This flowchart describes our object pose estimation pipeline. Three 4K cameras send images via USB to a Jetson Nano [26]. For each camera, a
camera publisher node handles the incoming camera stream and forwards the image to a running AprilTag detection node. For communication between the
different nodes, ROS is used, where each node publishes or subscribes to a topic (topics are marked as arrows connecting the different nodes). Running
on the main PC, each AprilTag detection node then forwards the detected markers of the corresponding image. The Object Locator Node receives the
detections from all three cameras and has access to the model transformations of each block. With that, it updates the transformations of all detected

blocks. This estimation can then be used for robot control.

can determine by comparing their ids if a detection and an
estimation of two tags are a true match. Thus we can count
inliers without resampling. The error function we use to
determine estimate quality is a reprojection error (described
later). Giving us the best estimation as a byproduct.

In practice, we observed that the best estimation typically
had lower errors when compared to the averages of all
estimations. This observation aligns with our modeling and
justifies our decision to adopt it as our model estimation at
that point. However, the results are still not great, being at
least marginally translated or rotated from the actual block
in the image plane most of the time.

Multi-View Multi-Marker based pose estimation is the
method we use. We apply reprojection error minimization
building on the recent research of [19] and [20]. To obtain
an accurate and reliable estimate of the pose, we optimize
the estimated pose of the reference tag at a specific point in
time. Specifically, we minimize the squared error between
the detected tag poses in the images and the poses calculated
using the known transformations from the reference tag
to the other tags. This optimization process is performed
across all available camera views, and the resulting errors
are summed to obtain an overall estimate of the pose. By
minimizing the error across all available camera views, we
are able to obtain a more robust and accurate estimation
of the pose. Different from their work we calculate the
reprojection errors in the image plane of the cameras,
while they compute the errors directly on the 3D estimates.
Our error calculation method is the traditional “bundle
adjustment” error function used in photogrammetry. From
an intuitive point of view, it has the advantage that changing
the distance estimate for a given camera view has a lower
impact on the error than correcting the in-plane translation
in the other perpendicular views.

Formally: Given an initial estimate for the reference tag
pose in world coordinates xf.T as the initial estimate for
minimization, we calculate the translations from the other tag
frames to the world frame "t,. Given the detected translations

of all tags in the respective camera frames ““"t; we transform

them and their corresponding estimated other tag locations
J,i into the world frame "¢, ;:

"o =yesT " 1o 4)

"ty =am T " (5)

And then all of them in all camera frames:
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The reprojection error of all estimates j,i for detection i to
the detected actual positions o of the other tags summed over
all camera views in their respective image planes, ¢ can now
be calculated using the camera matrices K.:

Y (K — Ko 1[5 (8)
c=0

is then minimized to get the best estimate for the ;, /7" which
is supplied to the optimizer as a vector containing the trans-
lation and quaternion values. In the current iteration of the
project, we are using scipy’s optimization package. The op-
timizers we used, in the end, were Sequential Least Squares
Programming (SLSQP) for constrained optimization using
gradient estimation and Broyden—Fletcher—Goldfarb—Shanno
(BFGS). The first as we wanted to ensure the boundary
condition of the quaternions parameters staying equal to one
in their total length. The second as it achieved lower errors,
albeit at a higher computation time.

D. Robot Control

In our current setup, we are using a Franka Emika Panda
Robot with integrated force sensors which enables the use of
impedance control. It is mounted in a dual-arm setup which
opens the option for parallel manipulation. However, for
simplicity, we are currently only using one arm. For the com-
munication with the robot we are using the provided ROS
(Robot Operating System) interface for the libfranka control
software in combination with Movelt!, a ROS based high-
level control framework. One of the key advantages of our
setup is our use of the ROS communication framework. This
allows us to easily integrate our pose estimation pipeline with



Fig. 5. Estimation of the orientation and position of each tag. To illustrate
the algorithm, parts of the block were masked out demonstrating the
estimation based on the visible tags.

the rest of our subsystems. By using ROS, we can seamlessly
share data and commands between different parts of our
system, improving our overall efficiency and effectiveness.
To execute the construction plan and correctly stack the SL-
Blocks, we plan to use pre-generated trajectories based on the
block pickup location and insertion pose in a later stage of
this project. The trajectories are provided by the grasshopper
engine [30], which is a graphical algorithm editor allowing
users to specify high-level design objectives. The trajectories
from the grasshopper are communicated through the ROS
interface by publishing the trajectories through a new topic.
Subscribing to this topic, we can use the joint positions to
make the robot execute the trajectory.

In this work, we employ an impedance controller from
Franka’s operating library libfranka to control the robot.
Our pose estimator detects the current pose of the block to
be manipulated and passes the information to the control
software. Based on the estimated pose, we select a suitable
grasp and proceed to grasp the block. The grasped block is
then moved to a predefined location and the placing process
is initialized. This process can be compared to the well-
known peg-in-hole problem, for which there are numerous
solutions available in the literature [31][32][33]. We abstract
the interlocking of the cubes as a multi-peg insertion prob-
lem. Thanks to the low stiffness induced by the impedance
controller and the compliant structure of the blocks, intuitive
insertion strategies can be employed, resulting in the block
sliding smoothly into its final position.

To be able to have seamless communication between all
components, we have to make sure that the estimated pose of
the block is in the right coordinate frame. Initially, the pose
of the block will be relative to the camera which is used to
estimate the location. This pose needs to be transferred in the
corresponding frame of reference of the robot such that the
robot can successfully approach the block in its frame. To
accomplish this a method called hand-eye-calibration is used.

The orientation of the robot and the camera to each other is
calculated which then can be used to transform estimated
block poses in the robotic frame of reference [34]. This
calibration needs to be done with great accuracy to reduce
the induced amount of uncertainty in the system.

Fig. 6. Scene from inside the simulation with the dual-arm robot as well
as the SL-Block.

E. Simulation

Parallel to the work on the real robot, we integrate a digital
twin of our real-world setup. This enables us to test new
approaches but also makes it possible to use it as a learning
platform for RL algorithms. Conducting experiments on a
real robot system not only takes time but also poses danger
to the people around as well as the robot itself. Wrong
configurations on a robot can lead to havoc and disaster
which we want to prevent as much as possible. Even though
the risk imposed through the robot arm that we are using is
quite low, security aspects should always be kept in mind.
By using a digital twin in a simulation we can reduce the risk
of bad configurations on the real robot by first testing them
in the simulated environment. In addition to this, we also
gain greater flexibility when it comes to testing new ideas as
we are not limited by the constraints of working with a real
robot. In our case, we have two important requirements for
the simulation to fulfill.

First, it has to be able to generate photo-realistic images
of the SL-Block and its structures. This is needed so we
can test and evaluate our detection pipeline with synthetic
images and expect it to perform similarly well in a real-world
environment. Therefore we implemented a digital twin of the
SL-Block with the same AprilTag configuration as in the real
setup.

Second, we need a physically accurate simulation of the
entire environment. This especially refers to the physical
properties of the SL-Block and its interaction with other
blocks and manipulation through the robot.

1) NVIDIA IsaacSim: We are using NVIDIA Isaac Sim
[35], a state-of-the-art robotics simulation platform. It al-
lows us to generate photo-realistic images by using the
latest advancements in real-time ray tracing and physically-
based rendering. Additionally, we can work with physically-
accurate simulation by leveraging the NVIDIA PhysX engine



Criterion \Method Avergge Est.imates Be.st Estimate SLSQP QPT BFGS OPT

Single-View Single-View Single-View | Single-View
3D translation error ref. marker in mm 558 558 84 16.9
3D translation error z only ref. marker in mm 476 475 72 16.1
3D translation error Xy only ref. marker in mm 288 288 34 4.1
Cumulative 2D error single-view in pixels squared 158 110 13.68 1.47
Computation time in ms 12 6 44 171

TABLE I

A COMPARISON OF THE METHODS OVER 3000 MEASUREMENTS

[36]. Regarding the ability to use the simulation as a training
platform for reinforcement learning, NVIDIA IsaacSim pro-
vides a new way to speed up the training of such models by
2-3 orders of magnitude compared to traditional techniques.
This is done using the recently published Isaac Gym [37]
which removes the CPU bottleneck during training and
directly passes the physics buffer via the GPU to the training
network which also resides on the GPU. We use the provided
Python interface as well as the ROS connector to interact
with the simulation.

1V. EVALUATION
A. Object Pose Estimation

In this section, we compare the performance of the
different approaches used through the different stages of
our progress. The data for the evaluation was generated in
simulation to focus on the method of object pose estimation
instead of the setup as a whole. The 3D error in translation
was calculated with the help of the simulation software. We
published the translation of the reference tag from it and
compared it to our estimates.

As one can see the BFGS single-view optimization is the
clear winner in all categories but the computation time. The
remaining 4.1 mm deviation in the x and y axis from the truth
value shows the limitations our camera resolution imposes
on the approach, as the error is almost at it’s theoretically
possible minimum 0. The O error might not be possible
even given the detections of the tags. The other optimization
algorithm SLSQP which we used in combination with a
constraint ensuring our quaternion stays one, is 5 times faster
but doesn’t find as good a solution in this case.

As is evident in the table above all non-multiview systems
are inaccurate in the depth aspect of the estimation, even
when they are accurate in the 2d error. Unfortunately, we
could not get our multi-view estimation implementation
working in time for the deadline. Therefore, evaluation of
it will be left for future work.

A rosbag containing the 4k image messages, true transla-
tion vector (tf) messages from the cameras to the reference
tag, tf messages from the cameras to the world origin and
lastly, the apriltag_ros detections messages, on which we did
all of the evaluations will be shared with any interested party.

V. CONCLUSION AND OUTLOOK

In this work, we present our plans and progress towards
developing a new approach to automating the construction
of predefined structures assembled from SL-Blocks utilizing

the Franka Emika robot. We tackle high-precision tracking
of the SL-Block by modifying recent multi-marker multi-
view-based object tracking algorithms. Instead of the
transformations between the markers of our target object
being unknown and determined in a calibration step
as in previous methods, the blocks are modeled with
transformations for the markers predefined. We cover all of
the block’s faces with fiducial markers (AprilTags). This
reduces the probability that all markers are occluded from
one of the viewing angles and improves the robustness of
our pose estimation. Most of the setup concerning hardware,
the experimental arrangement, and software integration via
ROS both in simulation and in the lab has been completed,
preparing the next stage of the sequential assembly project.
Our tracking allows us to accurately determine the pose
of the SL-Blocks. The hand-eye coordination for the robot
and the cameras enable us to determine said pose in the
robot frame. Based on this we are capable of executing
pick and place operations independent of the blocks
start pose, as long as it’s in the working area and one of
the programmed picking operations is kinematically feasible.

The current stage of the project can be seen as a proof of
concept for the construction pipeline. In the next stage of the
project the integration with the existing trajectory generation
from grasshopper for precomputed construction plans and
completing the Multi-View Pose Estimation integration will
be the focus.

REFERENCES

[1] M. Ben-Ari and F. Mondada, Robots and Their Applications, 01 2018,

pp. 1-20.
[2] M. Gharbia, A. Chang-Richards, Y. Lu, R. Y. Zhong,
and H. Li, “Robotic technologies for on-site building

construction: A systematic review,” Journal of Building Engineering,
vol. 32, p. 101584, Nov. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352710220313607

[31 Y. W. D. Tay, B. Panda, S. C. Paul, N. A. N. Mohamed,
M. J. Tan, and K. F. Leong, “3d printing trends in building
and construction industry: a review,” Virtual and Physical
Prototyping, vol. 12, no. 3, pp. 261-276, 2017. [Online]. Available:
https://doi.org/10.1080/17452759.2017.1326724

[4] A. V. Dyskin, E. Pasternak, and Y. Estrin, “Mortarless structures
based on topological interlocking,” Frontiers of Structural and Civil
Engineering, vol. 6, no. 2, pp. 188-197, Jun. 2012.

[5] S.-G. Shih, “On the hierarchical construction of sl blocks,” Sigrid
Adriaenssens, Fabio Gramazio, Matthias Kohler, 2016.

[6] B. Wibranek, Y. Liu, N. Funk, B. Belousov, J. Peters, and O. Tess-
mann, “Reinforcement learning for sequential assembly of sl-blocks,”
09 2021.




[7]

[8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble
with structured representations and search for robotic architectural
construction,” in Proceedings of the S5th Conference on Robot
Learning, 2022, pp. 1401-1411.

Y. Liu, B. Belousov, N. Funk, G. Chalvatzaki, J. Peters, and O. Tess-
man, “Auto(mated)nomous assembly,” in International Conference on
Trends on Construction in the Post-Digital Era, 2022, pp. 167-181.
Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

P. Song, Z. Fu, L. Liu, and C.-W. Fu, “Printing 3d
objects with interlocking parts,” Computer Aided Geometric
Design, vol. 35-36, pp- 137-148, 2015, geometric
Modeling and  Processing 2015. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167839615000436
S.-G. Shih, “The art and mathematics of self-interlocking sl blocks,” in
Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture,
Education, Culture, 2018, pp. 107-114.

M. Pfanne, M. Chalon, F. Stulp, and A. Albu-Schiffer, “Fusing
Joint Measurements and Visual Features for In-Hand Object Pose
Estimation,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3497-3504, Oct. 2018.

K. Pauwels and D. Kragic, “SimTrack: A simulation-based framework
for scalable real-time object pose detection and tracking,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2015, pp. 1300-1307.

V. Abhijith and A. B. Raj, “Robot Operating System based Charging
Pad Detection for Multirotors,” in 2020 4th International Conference
on Intelligent Computing and Control Systems (ICICCS), May 2020,
pp. 1151-1155.

G. Yu, Y. Liu, X. Han, and C. Zhang, “Objects Grasping of Robotic
Arm with Compliant Grasper Based on Vision,” in Proceedings of
the 2019 4th International Conference on Automation, Control and
Robotics Engineering, ser. CACRE2019. New York, NY, USA:
Association for Computing Machinery, Jul. 2019, pp. 1-6. [Online].
Available: https://doi.org/10.1145/3351917.3351958

N. Tian, A. K. Tanwani, J. Chen, M. Ma, R. Zhang, B. Huang,
K. Goldberg, and S. Sojoudi, “A Fog Robotic System for Dynamic
Visual Servoing,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 1982-1988, iSSN: 2577-087X.
S. Khattak, C. Papachristos, and K. Alexis, “Marker Based Thermal-
Inertial Localization for Aerial Robots in Obscurant Filled Environ-
ments,” in Advances in Visual Computing, ser. Lecture Notes in Com-
puter Science, G. Bebis, R. Boyle, B. Parvin, D. Koracin, M. Turek,
S. Ramalingam, K. Xu, S. Lin, B. Alsallakh, J. Yang, E. Cuervo, and
J. Ventura, Eds. Cham: Springer International Publishing, 2018, pp.
565-575.

M. Kalaitzakis, B. Cain, S. Carroll, A. Ambrosi, C. Whitehead,
and N. Vitzilaios, “Fiducial Markers for Pose Estimation,”
Journal of Intelligent & Robotic Systems, vol. 101, no. 4, p. 71,
Mar. 2021. [Online]. Available: https://doi.org/10.1007/s10846-020-
01307-9

H. Sarmadi, R. Mufioz-Salinas, M. A. Berbis, and R. Medina-Carnicer,
“Simultaneous Multi-View Camera Pose Estimation and Object Track-
ing With Squared Planar Markers,” IEEE Access, vol. 7, pp. 22927—
22940, 2019.

M. Trinh, J. Padhan, N. V. Navkar, and Z. Deng, “Preliminary Design
and Evaluation of an Interfacing Mechanism for Maneuvering Vir-
tual Minimally Invasive Surgical Instruments,” in 2022 International
Symposium on Medical Robotics (ISMR), Apr. 2022, pp. 1-7, iSSN:
2771-9049.

F. Ficuciello, L. Villani, and B. Siciliano, “Variable impedance control
of redundant manipulators for intuitive human-robot physical interac-
tion,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 850-863,
2015.

“Franka Panda,” Nov.
https://www.franka.de/research
E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2011, pp. 3400-3407.

M. D. Dogan, A. Taka, M. Lu, Y. Zhu, A. Kumar, A. Gupta, and
S. Mueller, “Infraredtags: Embedding invisible ar markers and bar-
codes using low-cost, infrared-based 3d printing and imaging tools,”
in Proceedings of the 2022 CHI Conference on Human Factors in

Computing Systems, 2022, pp. 1-12.

2022. [Online]. Available:

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

“NVIDIA Jetson Nano fiir KI-Anwendungen in der Peripherie
und Bildung.”” [Online]. Available: https://www.nvidia.com/de-
de/autonomous-machines/embedded-systems/jetson-nano/

F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman,
“Averaging quaternions,” Journal of Guidance, Control, and
Dynamics, vol. 30, no. 4, pp. 1193-1197, 2007. [Online]. Available:
https://doi.org/10.2514/1.28949

J. Springer and M. Kyas, “Evaluation of orientation ambiguity and
detection rate in april tag and whycode,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.10180

M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395, 1981.

S. D. c. t. N. Network, “Grasshopper.”
https://www.grasshopper3d.com/

T. Tang, H.-C. Lin, and M. Tomizuka, “A learning-based frame-
work for robot peg-hole-insertion,” in Dynamic Systems and Control
Conference, vol. 57250. American Society of Mechanical Engineers,
2015, p. VO02T27A002.

Y. Huang, X. Zhang, X. Chen, and J. Ota, “Vision-guided peg-in-
hole assembly by baxter robot,” Advances in Mechanical Engineering,
vol. 9, no. 12, p. 1687814017748078, 2017.

J. F. Broenink and M. L. Tiernego, “Peg-in-hole assembly using
impedance control with a 6 dof robot,” in Proceedings of the 8th
European Simulation Symposium, 1996, pp. 504-508.

R. Tsai and R. Lenz, “A new technique for fully autonomous and
efficient 3d robotics hand/eye calibration,” IEEE Transactions on
Robotics and Automation, vol. 5, no. 3, pp. 345-358, 1989.

“Isaac Sim,” Dec. 2019. [Online]. Available:
https://developer.nvidia.com/isaac-sim

“NVIDIA PhysX 4.5 and 5.0 SDK,” Nov. 2018. [Online]. Available:
https://developer.nvidia.com/physx-sdk

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey,
M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac Gym: High Performance GPU-Based Physics Simulation For
Robot Learning,” Tech. Rep., Aug. 2021, arXiv:2108.10470 [cs] type:
article. [Online]. Available: http://arxiv.org/abs/2108.10470

[Online]. Available:




